Epileptic Seizure: Classification Using Autoregression Features
نویسندگان
چکیده
منابع مشابه
Epileptic Seizure Classification Using Neural Networks with 14 Features
Epilepsy is one of the most frequent neurological disorders. The main method used in epilepsy diagnosis is electroencephalogram (EEG) signal analysis. However this method requires a time-consuming analysis when made manually by an expert due to the length of EEG recordings. This paper proposes an automatic classification system for epilepsy based on neural networks and EEG signals. The neural n...
متن کاملDetection and Classification of Epileptic Seizure using RBF Neural Network
The rapid growth of the medical technologies and constant renewal of medical facilities, electrocardiography (ECG) provides an effective and easy to use means for arrhythmia classification and heart rate variability (HRV) analysis. Most of the existing ECG device has the disadvantage of poor local signal processing ability. After thorough investigation, Android platform is adopted to develop an...
متن کاملEpileptic Seizure Classification of EEG Image Using SVM
In recent years humans suffer from various neurological disorders such as headache, dementia, traumatic brain injuries, strokes and epilepsy. Nearly 50 million people of the world population in all ages suffer from epilepsy. To diagnose epilepsy an automatic seizure detection system is an important tool. In this paper we present a new approach for classification of Electroencephalogram (EEG) si...
متن کاملEpileptic Seizure Prediction Using Hybrid Feature Selection
A comprehensive research of Electroencephalography (EEG) is carried out on Empirical Mode Decomposition (EMD) and Discrete Wavelet Transform (DWT) domains. In this scenario, the hybrid feature extraction is performed by utilizing entropy features like Shannon entropy, log-energy entropy and Renyi entropy. Generally, the entropy measures are effective in evaluation of non-linear interrelation an...
متن کاملEpileptic seizure detection using Reservoir Computing
In this paper it is shown that Reservoir Computing can be successfully applied to perform real-time detection of epileptic seizures in Electroencephalograms (EEGs). Absence and tonic-clonic seizures are detected on intracranial EEG coming from rats. This resulted in an area under the Receiver Operating Characteristics (ROC) curve of more than 0.99 on the data that was used. For absences an aver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Current Research and Review
سال: 2021
ISSN: 2231-2196,0975-5241
DOI: 10.31782/ijcrr.2021.13429